Teorema de congruencia lineal

De Wikipedia, la enciclopedia libre

En aritmética modular, la cuestión de cuándo una congruencia lineal puede ser resuelta se describe mediante el teorema de congruencia lineal. Si a y b dos números enteros cualesquiera y n es un número entero positivo, entonces la congruencia

(1)

tiene una solución para x si y solo si b es divisible por el máximo común divisor de a y n (denotado mediante mcd(a,n)). Cuando éste es el caso, y x0 es una solución de (1) , entonces el conjunto de todas las soluciones está dado por

En particular, existirán exactamente d = mcd(a,n) soluciones en el conjunto de residuos {0,1,2,...,n-1}.

Ejemplo[editar]

Por ejemplo, se puede examinar la ecuación ax ≡ 2 (mod 6) con diferentes valores de a para ver lo que produce:

Aquí d = mcd(3,6) = 3 pero puesto que 3 no divide a 2, entonces no hay solución.

Aquí d = mcd(5,6) = 1, el cual divide a cualquier b, y así solo hay exactamente una única solución en {0,1,2,3,4,5}: x=4.

Aquí d = mcd(4,6) = 2, el cual divide a 2, y así solo hay exactamente dos soluciones en {0,1,2,3,4,5}: x=2 y x=5.

Resolución de congruencias lineales[editar]

En la resolución general de ecuaciones de la forma:

si el máximo común divisor d = mcd(a, n) divide a b, entonces se puede encontrar una solución x para la congruencia como sigue: el algoritmo extendido de Euclides produce enteros r y s tales que ra + sn = d. Entonces x = rb/d es una solución. Las otras soluciones son los números congruentes con x módulo n/d.

Por ejemplo, la congruencia

tiene 4 soluciones puesto que mcd(12, 28) = 4 divide a 20. El algoritmo extendido de Euclides da (-2)*12 + 1*28 = 4, i.e. r = -2 y s = 1. Por lo tanto, una solución es x = -2*20/4 = -10, y -10 = 4 módulo 7. Todas las demás soluciones deberán ser también congruentes con 4 módulo 7. Puesto que la ecuación original usa módulo 28, El conjunto de soluciones enteras en el rango de 0 a 27 es x = {4,11,18,25}.

Sistemas de congruencias lineales[editar]

Mediante el repetido uso del teorema de la congruencia lineal, se puede también resolver sistemas de congruencias lineales, como en el siguiente ejemplo: encontrar todos los números x tales que

2x ≡ 2 (mod 6)
3x ≡ 2 (mod 7)
2x ≡ 4 (mod 8).

Resolviendo la primera congruencia utilizando el método expuesto arriba, se obtiene que x ≡ 1 (mod 3), el cual puede ser escrito también como x = 3k + 1. Sustituyendo éste en la segunda congruencia y simplificando, se obtiene

9k ≡ −1 (mod 7).

Al resolver la congruencia resulta que k ≡ 3 (mod 7), o k = 7l + 3. Se sigue entonces que x = 3 (7l + 3) + 1 = 21l + 10. Sustituyendo esto en la tercera congruencia y simplificando de nuevo, se obtiene

42l ≡ −16 (mod 8)

que tiene como solución l ≡ 0 (mod 4), o l = 4m. Esto produce x = 21(4m) + 10 = 84m + 10, o

x ≡ 10 (mod 84)

que describe todas las soluciones del sistema.

Véase también[editar]

Referencias[editar]